skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Fengli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. With teams growing in all areas of scientific and scholarly research, we explore the relationship between team structure and the character of knowledge they produce. Drawing on 89,575 self-reports of team member research activity underlying scientific publications, we show how individual activities cohere into broad roles of 1) leadership through the direction and presentation of research and 2) support through data collection, analysis, and discussion. The hidden hierarchy of a scientific team is characterized by its lead (or L) ratio of members playing leadership roles to total team size. The L ratio is validated through correlation with imputed contributions to the specific paper and to science as a whole, which we use to effectively extrapolate the L ratio for 16,397,750 papers where roles are not explicit. We find that, relative to flat, egalitarian teams, tall, hierarchical teams produce less novelty and more often develop existing ideas, increase productivity for those on top and decrease it for those beneath, and increase short-term citations but decrease long-term influence. These effects hold within person—the same person on the same-sized team produces science much more likely to disruptively innovate if they work on a flat, high-L-ratio team. These results suggest the critical role flat teams play for sustainable scientific advance and the training and advancement of scientists. 
    more » « less
  3. null (Ed.)
    Can health conditions be inferred from an individual's mobility pattern? Existing research has discussed the relationship between individual physical activity/mobility and well-being, yet no systematic study has been done to investigate the predictability of fine-grained health conditions from mobility, largely due to the unavailability of data and unsatisfactory modelling techniques. Here, we present a large-scale longitudinal study, where we collect the health conditions of 747 individuals who visit a hospital and tracked their mobility for 2 months in Beijing, China. To facilitate fine-grained individual health condition sensing, we propose HealthWalks, an interpretable machine learning model that takes user location traces, the associated points of interest, and user social demographics as input, at the core of which a Deterministic Finite Automaton (DFA) model is proposed to auto-generate explainable features to capture useful signals. We evaluate the effectiveness of our proposed model, which achieves 40.29% in micro-F1 and 31.63% in Macro-F1 for the 8-class disease category prediction, and outperforms the best baseline by 22.84% in Micro-F1 and 31.79% in Macro-F1. In addition, deeper analysis based on the SHapley Additive exPlanations (SHAP) showcases that HealthWalks can derive meaningful insights with regard to the correlation between mobility and health conditions, which provide important research insights and design implications for mobile sensing and health informatics. 
    more » « less